Toward a robust R2D2 paradigm for radio-interferometric imaging: revisiting DNN training and architecture
                
                A. Aghabiglou, C. S. Chu, C. Tang, A. Dabbech, Y. Wiaux,
                ApJS, 280(2):63, 2025.
                
                ArXiv:2503.02554v1|
                DOI:10.3847/1538-4365/adfbed
            
                    The AIRI plug-and-play algorithm for image reconstruction in radio-interferometry: variations and robustness 
                    M. Terris , C. Tang , A. Jackson , Y. Wiaux,  MNRAS, 537(2):1608-1619, 2025. 
                    ArXiv:2312.07137
	|               DOI:10.1093/mnras/staf022
                
                    Scalable precision wide-field imaging in radio interferometry: II. AIRI validated on ASKAP data 
                    A. Wilber, A. Dabbech, M. Terris, A. Jackson, and Y. Wiaux,  MNRAS, 522(4):5576–5587, 2023. 
                    ArXiv:2302.14149
	|               DOI:10.1093/mnras/stad1353
                
                    Image reconstruction algorithms in radio interferometry: from handcrafted to learned regularization denoisers 
                    M. Terris, A. Dabbech, C. Tang, and Y. Wiaux,  MNRAS,  518(1):604–622, 2023. 
                    ArXiv:2202.12959| DOI:10.1093/mnras/stac2672
            
                    First AI for deep super-resolution wide-field imaging in radio astronomy: unveiling structure in ESO 137-006 
                    A. Dabbech, M. Terris, A. Jackson, M. Ramatsoku, O. Smirnov, and Y. Wiaux,  ApJL, 939:L4, 2022. 
                    ArXiv:2207.11336| DOI:10.3847/2041-8213/ac98af